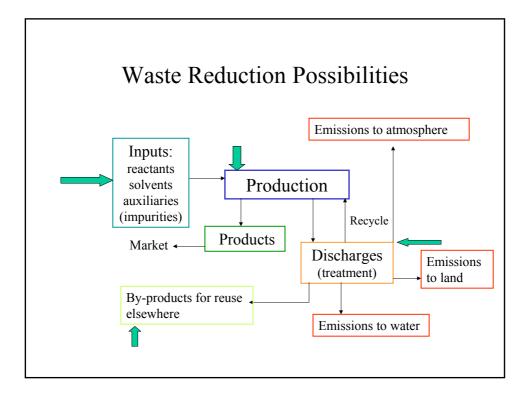
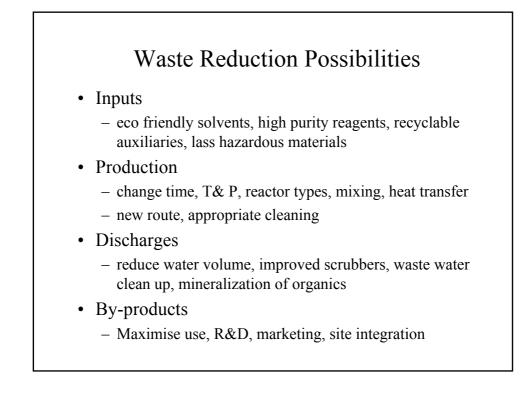
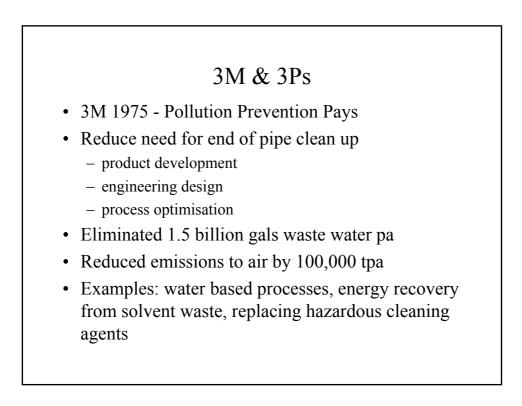

Waste Minimization Techniques

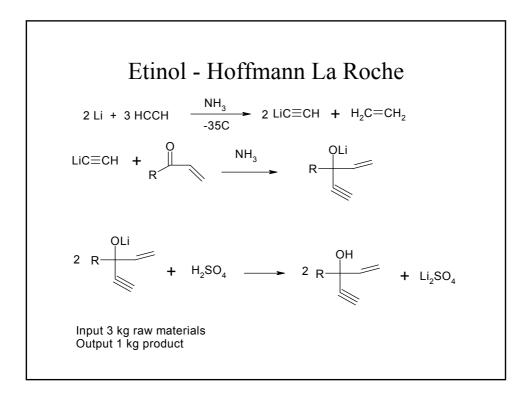
Mike Lancaster Green Chemistry Network

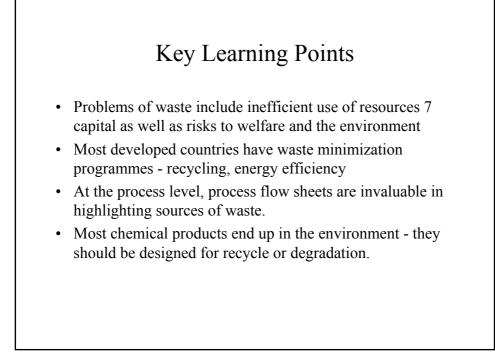

Waste Minimization Techniques


- Prevention is better than cure
- Get it right at the R&D stage
- Chemists do not have all the answers!
- The answer lies within a multi-disciplinary team
 - chemists
 - chemical engineers
 - production
 - business
 - health, safety, environment specialists
 - control engineers, environmental scientists, consultants/ etc


Table 2 Role of Teams in developing a new process selection

Chemist	Chem Eng.	Production	SHE	Business
Yield	Flow sheet	Operability	Emissions	Production cost
Purity	Heat & mass	Convenience for	Waste treatment	Waste disposal
	transfer	shifts		cost
Selectivity	Process costs	Operator safety	Regulatory	Product
			compliance	packaging
By-product	Equipment	Materials	Operator safety	Product liability
identification	choice	handling		
Mechamism	Product			Product quality
	isolation			




Some Questions

- Do we need to use organic solvents at all?
- Is there a viable alternative to using protecting groups?
- Can a catalyst be used in place of a reagent?
- Is the proposed reactor the most efficient, from an energy efficiency and waste minimisation point of view?
- Can we use a less hazardous raw material?
- Is there a viable alternative to using an elimination reaction?
- What is the reason for lack of selectivity for a given reaction? Can it be overcome?
- Are processing aids, such as filter aids necessary?
- Can any waste or by-products be recovered for use in another process or product?

Etinol Key Issues

- Expensive due to loss of 67% of raw material
 - Ethene production
 - significant resin formation in stage 2
 - Li lost with resin
- Improvements
 - R&D vinyl ketone unstable in ammonia add in organic solvent yields up by 15%, Li excess reduced, resins eliminated
 - Li could be recovered (not lost with resin), water used in stage 3 to recover LiOH - (off site conversion to Li)
 - engineering improvements to recycle acetylene & ammonia
 - use ethene as a fuel
 - acetylene use reduced by 50%, ammonia by 25%

Waste minimization reading list

- R Carlson, Silent Spring, Houghton Mifflin, 1962, New York
- J Aguado & D Serrano, *Feedstock Recycling of Plastic Wastes*, 1999, Royal Society of Chemistry, Cambridge.
- C Christ, Production-Integrated Environmental protection and Waste Management in the Chemical Industry, Wiley-VCH, 1999, Weinheim
- W Hoyle & M Lancaster, *Clean Technology for the Manufacture of Speciality Chemicals*, RSC 2001, Cambridge
- Cuyahoga River Fire and Background www.epa.gov/glnpo/aoc/cuyahoga.html
- History of detergent development & environmental issues www.chemistry.co.nz/detergenthistory.htm